Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase.

Identifieur interne : 000154 ( Main/Exploration ); précédent : 000153; suivant : 000155

Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase.

Auteurs : Lauri Nikkanen [Finlande] ; Manuel Guinea Diaz [Finlande] ; Jouni Toivola [Finlande] ; Arjun Tiwari [Finlande] ; Eevi Rintam Ki [Finlande]

Source :

RBID : pubmed:30578537

Descripteurs français

English descriptors

Abstract

In natural growth habitats, plants face constant, unpredictable changes in light conditions. To avoid damage to the photosynthetic apparatus on thylakoid membranes in chloroplasts, and to avoid wasteful reactions, it is crucial to maintain a redox balance both within the components of photosynthetic electron transfer chain and between the light reactions and stromal carbon metabolism under fluctuating light conditions. This requires coordinated function of the photoprotective and regulatory mechanisms, such as non-photochemical quenching (NPQ) and reversible redistribution of excitation energy between photosystem II (PSII) and photosystem I (PSI). In this paper, we show that the NADPH-dependent chloroplast thioredoxin system (NTRC) is involved in the control of the activation of these mechanisms. In plants with altered NTRC content, the strict correlation between lumenal pH and NPQ is partially lost. We propose that NTRC contributes to downregulation of a slow-relaxing constituent of NPQ, whose induction is independent of lumenal acidification. Additionally, overexpression of NTRC enhances the ability to adjust the excitation balance between PSII and PSI, and improves the ability to oxidize the electron transfer chain during changes in light conditions. Thiol regulation allows coupling of the electron transfer chain to the stromal redox state during these changes.

DOI: 10.1111/ppl.12914
PubMed: 30578537
PubMed Central: PMC6850073


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase.</title>
<author>
<name sortKey="Nikkanen, Lauri" sort="Nikkanen, Lauri" uniqKey="Nikkanen L" first="Lauri" last="Nikkanen">Lauri Nikkanen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guinea Diaz, Manuel" sort="Guinea Diaz, Manuel" uniqKey="Guinea Diaz M" first="Manuel" last="Guinea Diaz">Manuel Guinea Diaz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Toivola, Jouni" sort="Toivola, Jouni" uniqKey="Toivola J" first="Jouni" last="Toivola">Jouni Toivola</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tiwari, Arjun" sort="Tiwari, Arjun" uniqKey="Tiwari A" first="Arjun" last="Tiwari">Arjun Tiwari</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rintam Ki, Eevi" sort="Rintam Ki, Eevi" uniqKey="Rintam Ki E" first="Eevi" last="Rintam Ki">Eevi Rintam Ki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30578537</idno>
<idno type="pmid">30578537</idno>
<idno type="doi">10.1111/ppl.12914</idno>
<idno type="pmc">PMC6850073</idno>
<idno type="wicri:Area/Main/Corpus">000183</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000183</idno>
<idno type="wicri:Area/Main/Curation">000183</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000183</idno>
<idno type="wicri:Area/Main/Exploration">000183</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase.</title>
<author>
<name sortKey="Nikkanen, Lauri" sort="Nikkanen, Lauri" uniqKey="Nikkanen L" first="Lauri" last="Nikkanen">Lauri Nikkanen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guinea Diaz, Manuel" sort="Guinea Diaz, Manuel" uniqKey="Guinea Diaz M" first="Manuel" last="Guinea Diaz">Manuel Guinea Diaz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Toivola, Jouni" sort="Toivola, Jouni" uniqKey="Toivola J" first="Jouni" last="Toivola">Jouni Toivola</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tiwari, Arjun" sort="Tiwari, Arjun" uniqKey="Tiwari A" first="Arjun" last="Tiwari">Arjun Tiwari</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rintam Ki, Eevi" sort="Rintam Ki, Eevi" uniqKey="Rintam Ki E" first="Eevi" last="Rintam Ki">Eevi Rintam Ki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku</wicri:regionArea>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
<orgName type="university">Université de Turku</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chloroplasts (metabolism)</term>
<term>NADP (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Photosystem I Protein Complex (metabolism)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chloroplastes (métabolisme)</term>
<term>Complexe protéique du photosystème I (métabolisme)</term>
<term>Complexe protéique du photosystème II (métabolisme)</term>
<term>NADP (métabolisme)</term>
<term>Photosynthèse (physiologie)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>NADP</term>
<term>Photosystem I Protein Complex</term>
<term>Photosystem II Protein Complex</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloroplastes</term>
<term>Complexe protéique du photosystème I</term>
<term>Complexe protéique du photosystème II</term>
<term>NADP</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In natural growth habitats, plants face constant, unpredictable changes in light conditions. To avoid damage to the photosynthetic apparatus on thylakoid membranes in chloroplasts, and to avoid wasteful reactions, it is crucial to maintain a redox balance both within the components of photosynthetic electron transfer chain and between the light reactions and stromal carbon metabolism under fluctuating light conditions. This requires coordinated function of the photoprotective and regulatory mechanisms, such as non-photochemical quenching (NPQ) and reversible redistribution of excitation energy between photosystem II (PSII) and photosystem I (PSI). In this paper, we show that the NADPH-dependent chloroplast thioredoxin system (NTRC) is involved in the control of the activation of these mechanisms. In plants with altered NTRC content, the strict correlation between lumenal pH and NPQ is partially lost. We propose that NTRC contributes to downregulation of a slow-relaxing constituent of NPQ, whose induction is independent of lumenal acidification. Additionally, overexpression of NTRC enhances the ability to adjust the excitation balance between PSII and PSI, and improves the ability to oxidize the electron transfer chain during changes in light conditions. Thiol regulation allows coupling of the electron transfer chain to the stromal redox state during these changes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30578537</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>166</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase.</ArticleTitle>
<Pagination>
<MedlinePgn>211-225</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.12914</ELocationID>
<Abstract>
<AbstractText>In natural growth habitats, plants face constant, unpredictable changes in light conditions. To avoid damage to the photosynthetic apparatus on thylakoid membranes in chloroplasts, and to avoid wasteful reactions, it is crucial to maintain a redox balance both within the components of photosynthetic electron transfer chain and between the light reactions and stromal carbon metabolism under fluctuating light conditions. This requires coordinated function of the photoprotective and regulatory mechanisms, such as non-photochemical quenching (NPQ) and reversible redistribution of excitation energy between photosystem II (PSII) and photosystem I (PSI). In this paper, we show that the NADPH-dependent chloroplast thioredoxin system (NTRC) is involved in the control of the activation of these mechanisms. In plants with altered NTRC content, the strict correlation between lumenal pH and NPQ is partially lost. We propose that NTRC contributes to downregulation of a slow-relaxing constituent of NPQ, whose induction is independent of lumenal acidification. Additionally, overexpression of NTRC enhances the ability to adjust the excitation balance between PSII and PSI, and improves the ability to oxidize the electron transfer chain during changes in light conditions. Thiol regulation allows coupling of the electron transfer chain to the stromal redox state during these changes.</AbstractText>
<CopyrightInformation>© 2018 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nikkanen</LastName>
<ForeName>Lauri</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7192-9322</Identifier>
<AffiliationInfo>
<Affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guinea Diaz</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Toivola</LastName>
<ForeName>Jouni</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tiwari</LastName>
<ForeName>Arjun</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rintamäki</LastName>
<ForeName>Eevi</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1353-3995</Identifier>
<AffiliationInfo>
<Affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>276392</GrantID>
<Agency>Academy of Finland Grants</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>307335</GrantID>
<Agency>Academy of Finland Grants</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Doctoral program in molecular life sciences</GrantID>
<Agency>University of Turku Graduate School</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Doctoral Program in Molecular Life Sciences in the University of Turku Graduate School</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045331">Photosystem I Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045331" MajorTopicYN="N">Photosystem I Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30578537</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.12914</ArticleId>
<ArticleId IdType="pmc">PMC6850073</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 25;4:470</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jul;23(7):2659-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21803939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2018 Feb;37(2):279-291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29080907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2016 May;128(2):195-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26837213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Oct;7(10):1586-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24890758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Jun;16(3):307-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23583332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Direct. 2018 Nov 07;2(11):e00093</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31245694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cell Mol Biol. 2013;300:243-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23273864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Sep;77(9):5253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6933557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 29;284(22):15255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19307183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2017 Apr 4;474(8):1347-1360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28246333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11644-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2012 Sep;113(1-3):75-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22790560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Jun;37:56-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28426975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 11;275(32):24701-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10818090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Aug;39(8):1691-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 17;281(46):35039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16997915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Jun;1767(6):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17250801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 08;4:389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct;13(8):1169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1990 Sep;25(3):173-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1817(1):182-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1979 Aug 15;99(1):133-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">488114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jul;10(7):1235-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18377232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 18;354(6314):857-861</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2009 Mar;99(3):173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19037743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):E2733-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Dec 08;8:2094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29276525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 16;4:390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24137166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Jan 9;10(1):168-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27940305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jan 27;403(6768):391-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10667783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Jan;30(1):196-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29233855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Mar 21;2:16035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Mar;10(5):987-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20049866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Mar;22(3):249-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28139457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jan;1857(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26235611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1585-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Jan 26;8(1):e1000288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20126264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 May;171(1):82-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Dec 19;367(1608):3466-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2017 Dec;134(3):343-360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28497192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 24;433(7028):892-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15729347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12069-12074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):1766-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26338951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 7;299(5612):1530-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Apr;39(4):804-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26476233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 May;1777(5):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18394424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Mar 3;7(3):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19260761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):1903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26864015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Sep;87(6):654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27233821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Apr 2;589(8):919-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25747136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Feb;215-216:150-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24388526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
<region>
<li>Finlande occidentale</li>
</region>
<settlement>
<li>Turku</li>
</settlement>
<orgName>
<li>Université de Turku</li>
</orgName>
</list>
<tree>
<country name="Finlande">
<region name="Finlande occidentale">
<name sortKey="Nikkanen, Lauri" sort="Nikkanen, Lauri" uniqKey="Nikkanen L" first="Lauri" last="Nikkanen">Lauri Nikkanen</name>
</region>
<name sortKey="Guinea Diaz, Manuel" sort="Guinea Diaz, Manuel" uniqKey="Guinea Diaz M" first="Manuel" last="Guinea Diaz">Manuel Guinea Diaz</name>
<name sortKey="Rintam Ki, Eevi" sort="Rintam Ki, Eevi" uniqKey="Rintam Ki E" first="Eevi" last="Rintam Ki">Eevi Rintam Ki</name>
<name sortKey="Tiwari, Arjun" sort="Tiwari, Arjun" uniqKey="Tiwari A" first="Arjun" last="Tiwari">Arjun Tiwari</name>
<name sortKey="Toivola, Jouni" sort="Toivola, Jouni" uniqKey="Toivola J" first="Jouni" last="Toivola">Jouni Toivola</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000154 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000154 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30578537
   |texte=   Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30578537" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020